Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on September 1, 2021
READ PUBLICATION →

Selective Serotonin Reuptake Inhibitors and Clozapine: Clinically Relevant Interactions and Considerations.

Authors: Edinoff AN, Fort JM, Woo JJ, Causey CD, Burroughs CR, Cornett EM, Kaye AM, Kaye AD

Abstract: The monoamine hypothesis of depression attributes the symptoms of major depressive disorders to imbalances of serotonin, noradrenaline, and dopamine in the limbic areas of the brain. The preferential targeting of serotonin receptor (SERT) by selective serotonin reuptake inhibitors (SSRIs) has offered an opportunity to reduce the range of these side effects and improve patient adherence to pharmacotherapy. Clozapine remains an effective drug against treatment-resistant schizophrenia, defined as failing treatment with at least two different antipsychotic medications. Patients with schizophrenia who display a constellation of negative symptoms respond poorly to antipsychotic monotherapy. Negative symptoms include the diminution of motivation, interest, or expression. Conversely to the depressive symptomology of interest presently, supplementation of antipsychotics with SSRIs in schizophrenic patients with negative symptoms lead to synergistic improvements in the function of these patients. Fluvoxamine is one of the most potent inhibitors of CYP1A2 and can lead to an increase in clozapine levels. Similar increases in serum clozapine were detected in two patients taking sertraline. However, studies have been contradictory as well, showing no such increases, which are worrying. Clinicians should be aware that clozapine levels should be monitored with any coadministration with SSRIs.
Published on September 1, 2021
READ PUBLICATION →

Drug repositioning for anti-tuberculosis drugs: an in silico polypharmacology approach.

Authors: Madugula SS, Nagamani S, Jamir E, Priyadarsinee L, Sastry GN

Abstract: Development of potential antitubercular molecules is a challenging task due to the rapidly emerging drug-resistant strains of Mycobacterium tuberculosis (M.tb). Structure-based approaches hold greater benefit in identifying compounds/drugs with desired polypharmacological profiles. These methods can be employed based on the knowledge of protein binding sites to identify the complementary ligands. In this study, polypharmacology guided computational drug repurposing approach was applied to identify potential antitubercular drugs. 20 important druggable protein targets in M.tb were considered from the target library of Molecular Property Diagnostic Suite-Tuberculosis (MPDS(TB)- http://mpds.neist.res.in:8084 ) for virtual screening. FDA approved drugs were collected, preprocessed and docked in the active sites of the 20 M.tb targets. The top 300 drug molecules from each target (20 x 300) were filtered-in and subsequently screened for possible antitubercular and antimycobacterial activity using PASS tool. Using this approach, 34 drugs with predicted antitubercular and anti-mycobacterial activity were identified along with good binding affinity against multiple M.tb targets. Interestingly, 21 out of the 34 identified drugs are antibiotics while 4 drug molecules (nitrofural, stavudine, quinine and quinidine) are non-antibiotics showing promising predicted antitubercular activity. Most of these molecules have the similar privileged antimycobacterial drugs scaffold. Further drug likeness properties were calculated to get deeper insights to M.tb lead molecules. Interestingly, it was also observed that the drugs identified from the study are under different stages of drug discovery (i.e., in vitro, clinical trials) for the effective treatment of various diseases including cancer, degenerative diseases, dengue virus infection, tuberculosis, etc. Krasavin et al., 2017 synthesized nitrofuran analogues with appreciable MICs (22-23 microM) against M.tb H37Rv. These experiments further add to the credibility of the drugs identified in this study (TB).
Published on September 1, 2021
READ PUBLICATION →

Combined homologous recombination repair deficiency and immune activation analysis for predicting intensified responses of anthracycline, cyclophosphamide and taxane chemotherapy in triple-negative breast cancer.

Authors: Liao G, Jiang Z, Yang Y, Zhang C, Jiang M, Zhu J, Xu L, Xie A, Yan M, Zhang Y, Xiao Y, Li X

Abstract: BACKGROUND: Triple-negative breast cancer (TNBC) is a clinically aggressive disease with abundant variants that cause homologous recombination repair deficiency (HRD). Whether TNBC patients with HRD are sensitive to anthracycline, cyclophosphamide and taxane (ACT), and whether the combination of HRD and tumour immunity can improve the recognition of ACT responders are still unknown. METHODS: Data from 83 TNBC patients in The Cancer Genome Atlas (TCGA) was used as a discovery cohort to analyse the association between HRD and ACT chemotherapy benefits. The combined effects of HRD and immune activation on ACT chemotherapy were explored at both the genome and the transcriptome levels. Independent cohorts from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO) were adopted to validate our findings. RESULTS: HRD was associated with a longer ACT chemotherapy failure-free interval (FFI) with a hazard ratio of 0.16 (P = 0.004) and improved patient prognosis (P = 0.0063). By analysing both HRD status and ACT response, we identified patients with a distinct TNBC subtype (ACT-S&HR-P) that showed higher tumour lymphocyte infiltration, IFN-gamma activity and NK cell levels. Patients with ACT-S&HR-P had significantly elevated immune inhibitor levels and presented immune activation associated with the increased activities of both innate immune cells and adaptive immune cells, which suggested treatment with immune checkpoint blockade as an option for this subtype. Our analysis revealed that the combination of HRD and immune activation enhanced the efficiency of identifying responders to ACT chemotherapy (AUC = 0.91, P = 1.06e-04) and synergistically contributed to the clinical benefits of TNBC patients. A transcriptional HRD signature of ACT response-related prognostic factors was identified and independently validated to be significantly associated with improved survival in the GEO cohort (P = 0.0038) and the METABRIC dataset (P < 0.0001). CONCLUSIONS: These findings highlight that HR deficiency prolongs FFI and predicts intensified responses in TNBC patients by combining HRD and immune activation, which provides a molecular basis for identifying ACT responders.
Published in August 2021
READ PUBLICATION →

Diagnostic biomarkers and potential drug targets for coronary artery disease as revealed by systematic analysis of lncRNA characteristics.

Authors: Chen Z, Zhou D, Zhang X, Wu Q, Wu G

Abstract: Background: The expression profile of lncRNAs in coronary artery disease (CAD) patients has not yet been fully explored. Therefore, the current study aimed to investigate lncRNA-based prognostic biomarkers for CAD. Methods: The expression profiles of lncRNA and messenger RNA (mRNA) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed lncRNA (DElncRNAs) and DEmRNAs were identified from CAD and normal samples, and weighted gene co-expression network analysis (WGCNA) was conducted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to investigate the principal functions of significantly dysregulated genes. The potential drugs of new CAD-specific genes were identified by network distance method. Receiver operating characteristic (ROC) was used to verify the classification performance of genes. Results: A total of 512 differentially expressed genes (DEGs) and 308 DElncRNAs were identified from GSE113079 dataset to classify CAD samples. Through WGCNA co-expression analysis, 24 co-expression modules were obtained. A total of 187 DElncRNAs and 253 DEGs were determined from 7 modules correlated with CAD. Functional enrichment analysis showed that these DEGs were mainly related to inflammatory and immune-related pathways. Furthermore, 36 regulatory pairs of significantly shared micro RNAs (miRNAs) were identified as dysregulated lncRNA-mRNA (LRM-CAD), which contained 11 lncRNAs and 33 genes. Compared with a single lncRNA or gene, LRM-CAD showed stronger classification performance [average area under the curve (AUC) =0.958]. We screened 3 potential therapeutic drugs, DB09105, DB12371, and DB12612, a by binding drug-target gene interaction network. Molecular docking verified that the S1PR1 gene bound relatively closely to DB12371 and DB12612. The ROC analysis on external data sets showed that S1PR1, AC012640.4, and S1PR1-AC012640.4 could effectively distinguish CAD samples from control samples. Conclusions: We provided a transcriptome overview of abnormally expressed lncRNAs in CAD patients and identified novel biomarkers for diagnosing CAD.
Published in August 2021
READ PUBLICATION →

Do initial concentration and activated sludge seasonality affect pharmaceutical biotransformation rate constants?

Authors: van Bergen TJHM, Rios-Miguel AB, Nolte TM, Ragas AMJ, van Zelm R, Graumans M, Scheepers PTJ, Jetten MSM, Hendriks AJ, Welte CU

Abstract: Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC-MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. KEY POINTS: * Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. * Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. * Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change.
Published on August 31, 2021
READ PUBLICATION →

The Complex Structure of the Pharmacological Drug-Disease Network.

Authors: Lopez-Rodriguez I, Reyes-Manzano CF, Guzman-Vargas A, Guzman-Vargas L

Abstract: The complexity of drug-disease interactions is a process that has been explained in terms of the need for new drugs and the increasing cost of drug development, among other factors. Over the last years, diverse approaches have been explored to understand drug-disease relationships. Here, we construct a bipartite graph in terms of active ingredients and diseases based on thoroughly classified data from a recognized pharmacological website. We find that the connectivities between drugs (outgoing links) and diseases (incoming links) follow approximately a stretched-exponential function with different fitting parameters; for drugs, it is between exponential and power law functions, while for diseases, the behavior is purely exponential. The network projections, onto either drugs or diseases, reveal that the co-ocurrence of drugs (diseases) in common target diseases (drugs) lead to the appearance of connected components, which varies as the threshold number of common target diseases (drugs) is increased. The corresponding projections built from randomized versions of the original bipartite networks are considered to evaluate the differences. The heterogeneity of association at group level between active ingredients and diseases is evaluated in terms of the Shannon entropy and algorithmic complexity, revealing that higher levels of diversity are present for diseases compared to drugs. Finally, the robustness of the original bipartite network is evaluated in terms of most-connected nodes removal (direct attack) and random removal (random failures).
Published in August 2021
READ PUBLICATION →

Virtual screening and drug repurposing experiments to identify potential novel selective MAO-B inhibitors for Parkinson's disease treatment.

Authors: Crisan L, Istrate D, Bora A, Pacureanu L

Abstract: The main study's purpose is to detect novel natural products (NPs) that are potentially selective MAO-B inhibitors and, additionally, to computationally reposition the marketed drugs with a new therapeutic role for Parkinson's disease. To reach the goals, 3D similarity search, docking, ADMETox, and drug repurposing approaches were employed. Thus, an unbiased benchmarking dataset was built including selective and nonselective inhibitors for MAO-B compliant with both ligand- and structure-based virtual screening approaches. A retrospective and prospective mining scenario was applied to SPECS NP and DrugBank databases to detect novel scaffolds with potential benefits for Parkinson's disease patients. Out of the three best selected natural products, cardamomin showed excellently predicted drug-like properties, superior pharmacological profile, and specific interactions with MAO-B active site, indicating a potential selectivity over MAO-B. Two marketed drugs, fenamisal and monobenzone, were proposed as promising candidates repurposed for Parkinson's disease. The application of shape, physicochemical, and electrostatic similarity searches protocol emerged as a plausible solution to explore MAO-B inhibitors selectivity. This protocol might serve as a rewarding tool in early drug discovery and can be extended to other protein targets.
Published in August 2021
READ PUBLICATION →

A systems-level study reveals host-targeted repurposable drugs against SARS-CoV-2 infection.

Authors: Chen F, Shi Q, Pei F, Vogt A, Porritt RA, Garcia G Jr, Gomez AC, Cheng MH, Schurdak ME, Liu B, Chan SY, Arumugaswami V, Stern AM, Taylor DL, Arditi M, Bahar I

Abstract: Understanding the mechanism of SARS-CoV-2 infection and identifying potential therapeutics are global imperatives. Using a quantitative systems pharmacology approach, we identified a set of repurposable and investigational drugs as potential therapeutics against COVID-19. These were deduced from the gene expression signature of SARS-CoV-2-infected A549 cells screened against Connectivity Map and prioritized by network proximity analysis with respect to disease modules in the viral-host interactome. We also identified immuno-modulating compounds aiming at suppressing hyperinflammatory responses in severe COVID-19 patients, based on the transcriptome of ACE2-overexpressing A549 cells. Experiments with Vero-E6 cells infected by SARS-CoV-2, as well as independent syncytia formation assays for probing ACE2/SARS-CoV-2 spike protein-mediated cell fusion using HEK293T and Calu-3 cells, showed that several predicted compounds had inhibitory activities. Among them, salmeterol, rottlerin, and mTOR inhibitors exhibited antiviral activities in Vero-E6 cells; imipramine, linsitinib, hexylresorcinol, ezetimibe, and brompheniramine impaired viral entry. These novel findings provide new paths for broadening the repertoire of compounds pursued as therapeutics against COVID-19.
Published in August 2021
READ PUBLICATION →

Case of multifocal glioblastoma with four fusion transcripts of ALK, FGFR2, NTRK2, and NTRK3 genes stresses the need for tumor tissue multisampling for transcriptomic analysis.

Authors: Samii A, Sorokin M, Kar S, Makovskaia L, Garazha A, Hartmann C, Moisseev A, Kim E, Giese A, Buzdin A

Abstract: Glioblastoma multiforme (GBM) is the most malignant brain tumor with patient mortality rate close to 100%, 5-yr survival rate of approximately 5%, and a median survival of 14 mo. GBMs have notorious histomorphologic and molecular heterogeneities thus giving hope for development of future personalized therapies. We describe here a case of a 48-yr-old male patient with three-nodular GBM. To address the question of intratumoral molecular heterogeneity, a comparative analysis of gene expression was performed by using multiple samples collected from different tumor sites with the aid of intraoperative magnetic resonance imaging (MRI). Sixteen GBM biosamples from parietal, temporal, and temporo-polar localizations were collected from primary, recurrent, and second recurrent tumors and were obtained and investigated by RNA sequencing. Our investigations revealed that biosamples derived from different tumor sites differ in their gene expression profiles with classical or mesenchymal signatures associated with clinically distinct molecular subtypes of GBM found within the same tumor. The results also showed significant differences in the expression of genes specific for targeted therapeutics. Our investigations have enabled the identification of four novel fusion transcripts-KIF5C-NTRK3, AC016907.2-ALK, CNTNAP3-NTRK2, and ZNF135-FGFR2-each present in only one sample. We found no differences between untreated and recurrent stages in the expression levels of genes involved in fusion transcripts, suggesting the lack of association between fusion transcript and treatment response. In contrast, longitudinal changes in the expression of VEGF and MGMT genes were concordant with the tumor response to bevacizumab and temozolomide. Our study underscores the importance of integrating a multisampling approach and RNA sequencing and demonstrates the predictive merit of an integrated approach for differentiating genomic aberrations associated with untreated or post-treatment recurrent GBMs.
Published on August 31, 2021
READ PUBLICATION →

Automatic Identification of Analogue Series from Large Compound Data Sets: Methods and Applications.

Authors: Naveja JJ, Vogt M

Abstract: Analogue series play a key role in drug discovery. They arise naturally in lead optimization efforts where analogues are explored based on one or a few core structures. However, it is much harder to accurately identify and extract pairs or series of analogue molecules in large compound databases with no predefined core structures. This methodological review outlines the most common and recent methodological developments to automatically identify analogue series in large libraries. Initial approaches focused on using predefined rules to extract scaffold structures, such as the popular Bemis-Murcko scaffold. Later on, the matched molecular pair concept led to efficient algorithms to identify similar compounds sharing a common core structure by exploring many putative scaffolds for each compound. Further developments of these ideas yielded, on the one hand, approaches for hierarchical scaffold decomposition and, on the other hand, algorithms for the extraction of analogue series based on single-site modifications (so-called matched molecular series) by exploring potential scaffold structures based on systematic molecule fragmentation. Eventually, further development of these approaches resulted in methods for extracting analogue series defined by a single core structure with several substitution sites that allow convenient representations, such as R-group tables. These methods enable the efficient analysis of large data sets with hundreds of thousands or even millions of compounds and have spawned many related methodological developments.