Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published in August 2021
READ PUBLICATION →

Inhibition of the neuromuscular acetylcholine receptor with atracurium activates FOXO/DAF-16-induced longevity.

Authors: McIntyre RL, Denis SW, Kamble R, Molenaars M, Petr M, Schomakers BV, Rahman M, Gupta S, Toth ML, Vanapalli SA, Jongejan A, Scheibye-Knudsen M, Houtkooper RH, Janssens GE

Abstract: Transcriptome-based drug screening is emerging as a powerful tool to identify geroprotective compounds to intervene in age-related disease. We hypothesized that, by mimicking the transcriptional signature of the highly conserved longevity intervention of FOXO3 (daf-16 in worms) overexpression, we could identify and repurpose compounds with similar downstream effects to increase longevity. Our in silico screen, utilizing the LINCS transcriptome database of genetic and compound interventions, identified several FDA-approved compounds that activate FOXO downstream targets in mammalian cells. These included the neuromuscular blocker atracurium, which also robustly extends both lifespan and healthspan in Caenorhabditis elegans. This longevity is dependent on both daf-16 signaling and inhibition of the neuromuscular acetylcholine receptor subunit unc-38. We found unc-38 RNAi to improve healthspan, lifespan, and stimulate DAF-16 nuclear localization, similar to atracurium treatment. Finally, using RNA-seq transcriptomics, we identify atracurium activation of DAF-16 downstream effectors. Together, these data demonstrate the capacity to mimic genetic lifespan interventions with drugs, and in doing so, reveal that the neuromuscular acetylcholine receptor regulates the highly conserved FOXO/DAF-16 longevity pathway.
Published in August 2021
READ PUBLICATION →

Chromatin Looping Links Target Genes with Genetic Risk Loci for Dermatological Traits.

Authors: Shi C, Ray-Jones H, Ding J, Duffus K, Fu Y, Gaddi VP, Gough O, Hankinson J, Martin P, McGovern A, Yarwood A, Gaffney P, Eyre S, Rattray M, Warren RB, Orozco G

Abstract: Chromatin looping between regulatory elements and gene promoters presents a potential mechanism whereby disease risk variants affect their target genes. In this study, we use H3K27ac HiChIP, a method for assaying the active chromatin interactome in two cell lines: keratinocytes and skin lymphoma-derived CD8+ T cells. We integrate public datasets for a lymphoblastoid cell line and primary CD4+ T cells and identify gene targets at risk loci for skin-related disorders. Interacting genes enrich for pathways of known importance in each trait, such as cytokine response (psoriatic arthritis and psoriasis) and replicative senescence (melanoma). We show examples of how our analysis can inform changes in the current understanding of multiple psoriasis-associated risk loci. For example, the variant rs10794648, which is generally assigned to IFNLR1, was linked to GRHL3, a gene essential in skin repair and development, in our dataset. Our findings, therefore, indicate a renewed importance of skin-related factors in the risk of disease.
Published in August 2021
READ PUBLICATION →

Utilizing a Biology-Driven Approach to Map the Exposome in Health and Disease: An Essential Investment to Drive the Next Generation of Environmental Discovery.

Authors: Chung MK, Rappaport SM, Wheelock CE, Nguyen VK, van der Meer TP, Miller GW, Vermeulen R, Patel CJ

Abstract: BACKGROUND: Recent developments in technologies have offered opportunities to measure the exposome with unprecedented accuracy and scale. However, because most investigations have targeted only a few exposures at a time, it is hypothesized that the majority of the environmental determinants of chronic diseases remain unknown. OBJECTIVES: We describe a functional exposome concept and explain how it can leverage existing bioassays and high-resolution mass spectrometry for exploratory study. We discuss how such an approach can address well-known barriers to interpret exposures and present a vision of next-generation exposomics. DISCUSSION: The exposome is vast. Instead of trying to capture all exposures, we can reduce the complexity by measuring the functional exposome-the totality of the biologically active exposures relevant to disease development-through coupling biochemical receptor-binding assays with affinity purification-mass spectrometry. We claim the idea of capturing exposures with functional biomolecules opens new opportunities to solve critical problems in exposomics, including low-dose detection, unknown annotations, and complex mixtures of exposures. Although novel, biology-based measurement can make use of the existing data processing and bioinformatics pipelines. The functional exposome concept also complements conventional targeted and untargeted approaches for understanding exposure-disease relationships. CONCLUSIONS: Although measurement technology has advanced, critical technological, analytical, and inferential barriers impede the detection of many environmental exposures relevant to chronic-disease etiology. Through biology-driven exposomics, it is possible to simultaneously scale up discovery of these causal environmental factors. https://doi.org/10.1289/EHP8327.
Published in August 2021
READ PUBLICATION →

Network pharmacology study on the mechanism of Qiangzhifang in the treatment of panic disorder.

Authors: Zhao R, Liu P, Song A, Liu J, Chu Q, Liu Y, Jiang Y, Dong C, Shi H, Yan Z

Abstract: Background: Panic disorder (PD) is a kind of mental illness characterized by the symptom of recurring panic attacks. Qiangzhifang (QZF) is a novel decoction developed by Professor Zhaojun Yan based on a unique system of syndrome differentiation and clinical experience. It has achieved remarkable results after long-term clinical practice, but its mechanism of action is still unclear. This study aims to use network pharmacology and molecular docking to explore the mechanism of QZF in the treatment of PD. Methods: We used the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), a literature search, and Encyclopedia of Traditional Chinese Medicine (ETCM) to find active ingredients and targets of QZF. We searched for PD targets in GeneCards, Online Mendelian Inheritance in Man (OMIM), the Comparative Toxicogenomics Database (CTD), and DrugBank. We established a PD target database, constructed a protein-protein interaction (PPI) network, and performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis in order to screen possible pathways of action and analyze the mechanism. Results: This study identified 84 effective components of QZF, 691 potential targets, 357 PD targets, and 97 intersectional targets. Enrichment analysis using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) showed that QZF was associated with 118 biological processes (BPs), 18 cellular components (CCs), 35 molecular functions (MFs) [false discovery rate (FDR) <0.01], and 62 pathways (FDR <0.01). QZF mainly acts on its targets AKT1, FOS, and APP through active ingredients such as quercetin, beta-sitosterol, 4-(4'-hydroxybenzyloxy)benzyl methyl ether, harmine, 1,7-dimethoxyxanthone, and 1-hydroxy-3,7-dimethoxyxanthone to regulate serotonin, gamma-aminobutyric acid (GABA), cyclic adenosine monophosphate (cAMP), and other signal pathways to treat PD. Conclusions: Through network pharmacology and molecular docking technology, we predicted the possible mechanism of QZF in the treatment of PD, revealed the interaction targets and potential value of QZF, and provided a basis for its clinical application.
Published in August 2021
READ PUBLICATION →

NOGEA: A Network-oriented Gene Entropy Approach for Dissecting Disease Comorbidity and Drug Repositioning.

Authors: Guo Z, Fu Y, Huang C, Zheng C, Wu Z, Chen X, Gao S, Ma Y, Shahen M, Li Y, Tu P, Zhu J, Wang Z, Xiao W, Wang Y

Abstract: Rapid development of high-throughput technologies has permitted the identification of an increasing number of disease-associated genes (DAGs), which are important for understanding disease initiation and developing precision therapeutics. However, DAGs often contain large amounts of redundant or false positive information, leading to difficulties in quantifying and prioritizing potential relationships between these DAGs and human diseases. In this study, a network-oriented gene entropy approach (NOGEA) is proposed for accurately inferring master genes that contribute to specific diseases by quantitatively calculating their perturbation abilities on directed disease-specific gene networks. In addition, we confirmed that the master genes identified by NOGEA have a high reliability for predicting disease-specific initiation events and progression risk. Master genes may also be used to extract the underlying information of different diseases, thus revealing mechanisms of disease comorbidity. More importantly, approved therapeutic targets are topologically localized in a small neighborhood of master genes in the interactome network, which provides a new way for predicting drug-disease associations. Through this method, 11 old drugs were newly identified and predicted to be effective for treating pancreatic cancer and then validated by in vitro experiments. Collectively, the NOGEA was useful for identifying master genes that control disease initiation and co-occurrence, thus providing a valuable strategy for drug efficacy screening and repositioning. NOGEA codes are publicly available at https://github.com/guozihuaa/NOGEA.
Published on August 31, 2021
READ PUBLICATION →

Exploring targets and signaling pathways of paeonol involved in relieving inflammation based on modern technology.

Authors: Qi JH, Dong FX, Wang XL

Abstract: Paeonol, derived from natural plants (Moutan Cortex), has a wide range of biological effects, including anti-inflammatory and antitumor effects as well as favorable effects against cardiovascular and neurodegenerative diseases. The anti-inflammatory action is the main pharmacological activity of paeonol and has the greatest clinical relevance. However, the anti-inflammatory mechanism of paeonol has not been reported in sufficient detail. We systematically analyzed the anti-inflammatory mechanism of paeonol using network pharmacological databases and platforms, including TCMSP, Swiss TargetPrediction, OMIM, DrugBank, TTD, Jevnn, STRING11.0, and Metascape. Furthermore, we used high-throughput molecular docking method to prove the results of the above analyses, providing a reference for exploring the mechanism of paeonol and developing targeted drugs.
Published in August 2021
READ PUBLICATION →

NFnetFu: A novel workflow for microbiome data fusion.

Authors: Bisht V, Acharjee A, Gkoutos GV

Abstract: Microbiome data analysis and its interpretation into meaningful biological insights remain very challenging for numerous reasons, perhaps most prominently, due to the need to account for multiple factors, including collinearity, sparsity (excessive zeros) and effect size, that the complex experimental workflow and subsequent downstream data analysis require. Moreover, a meaningful microbiome data analysis necessitates the development of interpretable models that incorporate inferences across available data as well as background biomedical knowledge. We developed a multimodal framework that considers sparsity (excessive zeros), lower effect size, intrinsically microbial correlations, i.e., collinearity, as well as background biomedical knowledge in the form of a cluster-infused enriched network architecture. Finally, our framework also provides a candidate taxa/Operational Taxonomic Unit (OTU) that can be targeted for future validation experiments. We have developed a tool, the term NFnetFU (Neuro Fuzzy network Fusion), that encompasses our framework and have made it freely available at https://github.com/VartikaBisht6197/NFnetFu.
Published on August 31, 2021
READ PUBLICATION →

RNA-Protein Interaction Analysis of SARS-CoV-2 5' and 3' Untranslated Regions Reveals a Role of Lysosome-Associated Membrane Protein-2a during Viral Infection.

Authors: Verma R, Saha S, Kumar S, Mani S, Maiti TK, Surjit M

Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus. The viral genome is capped at the 5' end, followed by an untranslated region (UTR). There is a poly(A) tail at the 3' end, preceded by a UTR. The self-interaction between the RNA regulatory elements present within the 5' and 3' UTRs and their interaction with host/virus-encoded proteins mediate the function of the 5' and 3' UTRs. Using an RNA-protein interaction detection (RaPID) assay coupled to liquid chromatography with tandem mass spectrometry, we identified host interaction partners of SARS-CoV-2 5' and 3' UTRs and generated an RNA-protein interaction network. By combining these data with the previously known protein-protein interaction data proposed to be involved in virus replication, we generated the RNA-protein-protein interaction (RPPI) network, likely to be essential for controlling SARS-CoV-2 replication. Notably, bioinformatics analysis of the RPPI network revealed the enrichment of factors involved in translation initiation and RNA metabolism. Lysosome-associated membrane protein-2a (Lamp2a), the receptor for chaperone-mediated autophagy, is one of the host proteins that interact with the 5' UTR. Further studies showed that the Lamp2 level is upregulated in SARS-CoV-2-infected cells and that the absence of the Lamp2a isoform enhanced the viral RNA level whereas its overexpression significantly reduced the viral RNA level. Lamp2a and viral RNA colocalize in the infected cells, and there is an increased autophagic flux in infected cells, although there is no change in the formation of autophagolysosomes. In summary, our study provides a useful resource of SARS-CoV-2 5' and 3' UTR binding proteins and reveals the role of Lamp2a protein during SARS-CoV-2 infection. IMPORTANCE Replication of a positive-strand RNA virus involves an RNA-protein complex consisting of viral genomic RNA, host RNA(s), virus-encoded proteins, and host proteins. Dissecting out individual components of the replication complex will help decode the mechanism of viral replication. 5' and 3' UTRs in positive-strand RNA viruses play essential regulatory roles in virus replication. Here, we identified the host proteins that associate with the UTRs of SARS-CoV-2, combined those data with the previously known protein-protein interaction data (expected to be involved in virus replication), and generated the RNA-protein-protein interaction (RPPI) network. Analysis of the RPPI network revealed the enrichment of factors involved in translation initiation and RNA metabolism, which are important for virus replication. Analysis of one of the interaction partners of the 5'-UTR (Lamp2a) demonstrated its role in reducing the viral RNA level in SARS-CoV-2-infected cells. Collectively, our study provides a resource of SARS-CoV-2 UTR-binding proteins and identifies an important role for host Lamp2a protein during viral infection.
Published in August 2021
READ PUBLICATION →

Exploring Chemical Information in PubChem.

Authors: Kim S

Abstract: PubChem (https://pubchem.ncbi.nlm.nih.gov) is a public chemical database that serves scientific communities as well as the general public. This database collects chemical information from hundreds of data sources and organizes them into multiple data collections, including Substance, Compound, BioAssay, Protein, Gene, Pathway, and Patent. These collections are interlinked with each other, allowing users to discover related records in the various collections (e.g., drugs targeting a protein or genes modulated by a chemical). PubChem can be searched by keyword (e.g., a chemical, protein, or gene name) as well as by chemical structure. The input structure can be provided using popular line notations or drawn with the PubChem Sketcher. PubChem supports various types of structure searches, including identity search, 2-D and 3-D similarity searches, and substructure and superstructure searches. Results from multiple searches can be combined using Boolean operators (i.e., AND, OR, and NOT) to formulate complex queries. PubChem allows the user to quickly retrieve a list of records annotated with a particular classification or ontological term. This paper provides step-by-step instructions on how to explore PubChem data with examples of commonly requested tasks. (c) 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Finding genes and proteins that interact with a given compound Basic Protocol 2: Finding drug-like compounds similar to a query compound through a two-dimensional (2-D) similarity search Basic Protocol 3: Finding compounds similar to a query compound through a three-dimensional (3-D) similarity search Support Protocol: Computing similarity scores between compounds Basic Protocol 4: Getting the bioactivity data for the hit compounds from substructure search Basic Protocol 5: Finding drugs that target a particular gene Basic Protocol 6: Getting bioactivity data of all chemicals tested against a protein. Basic Protocol 7: Finding compounds annotated with classifications or ontological terms Basic Protocol 8: Finding stereoisomers and isotopomers of a compound through identity search.
Published on August 30, 2021
READ PUBLICATION →

QSAR-Based Computational Approaches to Accelerate the Discovery of Sigma-2 Receptor (S2R) Ligands as Therapeutic Drugs.

Authors: Yu Y, Dong H, Peng Y, Welsh WJ

Abstract: S2R overexpression is associated with various forms of cancer as well as both neuropsychiatric disorders (e.g., schizophrenia) and neurodegenerative diseases (Alzheimer's disease: AD). In the present study, three ligand-based methods (QSAR modeling, pharmacophore mapping, and shape-based screening) were implemented to select putative S2R ligands from the DrugBank library comprising 2000+ entries. Four separate optimization algorithms (i.e., stepwise regression, Lasso, genetic algorithm (GA), and a customized extension of GA called GreedGene) were adapted to select descriptors for the QSAR models. The subsequent biological evaluation of selected compounds revealed that three FDA-approved drugs for unrelated therapeutic indications exhibited sub-1 uM binding affinity for S2R. In particular, the antidepressant drug nefazodone elicited a S2R binding affinity Ki = 140 nM. A total of 159 unique S2R ligands were retrieved from 16 publications for model building, validation, and testing. To our best knowledge, the present report represents the first case to develop comprehensive QSAR models sourced by pooling and curating a large assemblage of structurally diverse S2R ligands, which should prove useful for identifying new drug leads and predicting their S2R binding affinity prior to the resource-demanding tasks of chemical synthesis and biological evaluation.